Dynamic Algorithm Selection in Parallel
GAMESS on a Chip Multithreaded Processor

Lakshminarasimhan Seshagiri', Masha Sosonkina', and Zhao Zhang?

! Department of Electrical and Computer Engineering
Ames Laboratory
Iowa State University
Ames, TA 50011 USA
sln,masha@scl.ameslab.gov,
2 Department of Electrical and Computer Engineering
Towa State University
Ames, TA 50011 USA

zzhang@iastate.edu

Abstract. Multi-core and multi-threaded processing environments have
become the norm in the generic computing environment and are being
considered added an extra dimension to the execution of any application.
Inclusion of this dimension in any application adaptation scheme has
shown to provide a great deal of improvement in the application perfor-
mance. General Atomic and Molecular Electronic Structure (GAMESS)
used for ab-initio molecular quantum chemistry calculations has been
chosen to test such an adaptation scheme using the middleware NICAN.
GAMESS has two different implementations of Self Consistency Fields(SCF)
methods which uses either the disk IO or the memory and switching be-
tween these has shown to provide great performance gains. In this paper,
we test and show the he suitability of the adaptation between the two
SCF implementations on a Chip Multithreaded processor.

1 Introduction

General Atomic and Molecular Electronic Structure(GAMESS) performs ab-
initio molecular quantum chemistry calculations [2] to perform a wide range of
Hartee-Fock (HF) wave function (RHF,ROHF and UHF) calculations . Using
Self Consistent Field (SCF) method, GAMESS iteratively approximates solu-
tion to the shrodinger equation that describes the basic structure of atoms and
molecules. GAMESS uses two different SCF implementation methods, direct and
conventional. The direct algorithm recomputes integrals on the fly for each it-
eration mainly consuming physical memory and CPU resources. Conversely, the
conventional diskbased algorithm calculates integrals once, stores them on disk,
and reuses during iterations resulting in a heavy disk I/O usage.

Numerous GAMESS calculations have parallel implementations utilizing dis-
tributed resources like memory and disk storage. The scalability of GAMESS is
aided by the use of a native communication layer DDI [7] that takes advantage

of shared memory on symmetric multiprocessors (SMP) and reduces the remote
data access bottleneck. [13] has shown that a parallel job with computing re-
sources distributed over different nodes is faster than a job running on a single
node. In [9] [4], it was shown that this could be due to the inability of the com-
munication layer implementations to handle the shared memory access. Hence,
a single processor per node scattering was used for better utilization of the net-
working hardware. Also, a conventional GAMESS job run in parallel is slower
than the same job run sequentially due to IO bottlenecks caused by simulta-
neous access of the physical files. It was also shown in [12] that while running
concurrent scattered GAMESS jobs, if only a single conventional job is run, we
are able to achieve better performance. This modification to the GAMESS job
run can be done such that the execution algorithm can be selected at the start
of every job run as well as during the execution of the job. GAMESS source
code modification is not a feasible option here and hence a generic middleware
like NICAN was used to perform the above mentioned adaptation [1]. The in-
tegrated middleware tool monitors system resources, analyzes job performance
and invokes adaptation handlers to improve resource utilization and application
performance.These tests were carried out in a SMP cluster environment.

A multi-core and multithreaded processor can be used as a single execution
environment in itself instead of a SMP cluster. The execution semantics change
in such an environment. This paper looks at the suitability of the adaptation
strategy on a Chip Multithreaded processor and is organized as follows. Section
7?7 gives an introduction to the multi-core and multi-threaded processors and
their characteristics. Section 3 explains the dynamic switching in GAMESS using
the NICAN middleware. Section ?7 talks about the switching algorithm and its
usage in a multi-threaded environment. Section shows the results obtained by
using the algorithm selection strategy on a Chip multithreaded Processor.

2 Introduction to a Multithreaded environment

Advances in processor technology have enabled us to utilize not only multi-
core processors but also processor that are capable of running multiple threads
concurrently on a single core. Most of the clusters used nowadays are multi-
core machines. We need to analyze the characteristics of such processors first
in order to exploit them for usage in the switching algorithm. One of the main
characteristics is that of the memory access. It is of paramount importance
in a computationally intensive application like GAMESS, as it determines the
performance of the user job. Most of the clusters that we use can be viewed as a
form of NUMA architecture. NUMA (Non Uniform memory access) is the design
used where each processor in a multi processor environment is provided with a
separate memory space and data is being shared between different memory banks
This needs to be handled using separate hardware and software since the data
can be distributed over different processor memories and coherency between this
data needs to be maintained. The communication cost will also play a significant
role in this design. Each node in a cluster can be considered equivalent to a

processor in NUMA architecture, but with a coupling that is not as tight as that
in NUMA. The nodal latency and bandwidth in clusters is much worse than a
normal NUMA machine. Hence when we run an IO intensive application like
the conventional GAMESS job, it is very likely to bog down the channel thereby
resulting in slower execution times .

Consider a multi-threaded processor like the Sun T2 Niagara, where the
communication and data sharing between the different cores has to be viewed
in a different way. The T2 Niagara processor is a CMP (Chip Multi-Threaded
Processors) that has 8 cores and is capable of running 8 threads on each core
simultaneously. Each one of these threads acts as a virtual processor to the
outside world. Thus the user application sees itself running on a 64-processor
machine with access to each and every one of them. Each of these virtual pro-
cessors includes all the architecturally required components to execute a thread
that includes registers both general purpose and special), integer and floating
point execution units and can handle interrupts. Thus each processor contains
a separate instance of the user state. The proximity of the shared resources like
cache to the virtual processors executing the code has a tremendous impact on
the execution times. The communication cost between processors executing the
code on different CMT processors is not similar to the cost when the code is
executed on the same CMT. However, by executing the code on the same CMT,
we give rise to resource contention issues. This is very similar to the NUMA
model and gives us a direction to code our applications. This model would de-
fine GAMESS execution on such CMTs and the endeavor of this paper is also
to look at different mapping strategies for GAMESS on a T2 processor.

3 Dynamic Switching in GAMESS using NICAN

middleware
Compute (C) Obtain initial guess
2-¢ integrals for density matrix
A / Recompute(D) /
wp-Form Fock matrix . upload (C)
2-¢ integrals
\J
Iterate Diagonalize Fock matrix

Form new density
matrix

Fig. 1. Illustration of the SCF algorithm as conventional (C) and direct (D) implemen-
tations.

The SCF algorithm is one of the most computationally intensive parts in
the GAMESS execution. Selection of the correct electronic structure calculation

routine has a very big effect on the overall calculation and calculation time. The
SCF algorithm is shown in Figure 1 in a diagrammatic form. The main difference
between the two implementations (conventional and direct) is the handling of
the two-electron (2-e) integrals. In the direct SCF method, the 2-e integrals are
recalculated for each iteration. This method is more computationally intensive
but it avoids any I/O bottleneck. In the conventional SCF method, the 2-e
integrals are calculated once at the beginning of the SCF process (box with
dashed border in Figure 1) and stored in a file on disk for subsequent iterations.
Since the SCF algorithm (Figure 1) is of iterative nature, switching between
conventional and direct implementations may be possible in an arbitrary SCF
iteration. The switching between the direct and conventional methods is carried
out using the NICAN middleware. A middleware is specifically used here in
order to decouple the application from having to make any adaptation decisions
during the application execution while at the same time limit the application
involvement only to the invocation of the adaptation handlers.

The GAMESS adaptation scheme using NICAN has been explained in detail
in [1]. Every GAMESS job that starts, first checks the peer jobs and in case
there is one other conventional job running, it changes the job execution to the
direct method. This adaptation is done using the control port(part of NICAN
middleware) during the preprocessing stage of the job. Once the execution starts,
the control port receives information from the GAMESS code through the dae-
mon and determines whether the adaptation should be done or not. This control
port is generalized to different molecules and computational systems. The con-
trol port combines system and application related information that it gathers
both at startup (static information) and during the actual run of the applica-
tion (dynamic information). The system information includes information like
the number of processors on which the job has to be run, the maximum time
that the job requires to run, the memory that is available with the system and
can be utilized by the job etc. The application related information includes the
estimated ideal time for running one iteration of the job, the actual iteration
time, the maximum number of iterations that need to be run, the upper bound
of time required for each iteration and the average iteration time over the it-
erations that have been completed. The formal algorithm has been described
below.

tny = actual time taken for iteration N
t% = upper bound for the time per iteration N
m = Average iteration time over N iterations
Aty = 1€ to
if (ti >t“ OR t; >m + Ato) then
if (SCF is conventional) then
switch to direct
else if ((no peer conventional jobs) AND (enough memory)) then
switch to conventional
end if
end if

The experimental results obtained for this algorithm on a SMP have been
given in [1]. We use the processor affinity property to test this algorithm on
multi-threaded and multi-core environment where each core is capable of run-
ning multiple execution threads. Processor affinity is the process of allocating
each process to a specific core such that all the resources available to that core
is utilized by that process. We can use this affinity model to schedule each indi-
vidual GAMESS job or its parts to a set of virtual processors. The experiments
were conducted on a T2 Niagara CMT, which is capable of running 64 threads
simultaneously. These experiments have helped us to understand the execution
semantics on such multi-threaded processors.

4 Experiments and Results

We consider the effects of running parallel versions of GAMESS on a single T2
Niagara processor but after ensuring that the jobs are run on different processor
sets. We are considering that only GAMESS jobs are run on this platform and
multiple GAMESS jobs request for the available resources for execution. The test
platform is a box that contains a single T2 Niagara processor with a 16GB main
memory that is shared between all the cores. Each of the 64 virtual processors
operates at a frequency of 1.167 GHz. The processor has a 16-way set associative
L2 cache of 4MB. It is banked eight ways so that each of the physical cores has
enough memory bandwidth. We chose the Luciferin and Ergosterol molecules for
performing the RHF SCF calculations. For Luciferin, GAMESS converges in 15
iterations with the conventional SCF algorithm requiring storing files of almost
3.5GB or with Direct SCF algorithm consuming 5.65MB of main memory. Sim-
ilarly, the Ergosterol molecule converges in 15 iterations with the conventional
SCF algorithm requiring almost 22GB of disk space for files and [|[MB of main
memory for performing the Direct calculation. These values are estimated by the
GAMESS check module. All the GAMESS calculations start off as Conventional
by default.

We first benchmark both these molecules by running single jobs on different
sets of processor thread combinations. For the Luciferin molecule we can see
that as we increase the number of threads the execution time reduces for both
the conventional and direct mode of calculation. On the other hand, for the
Ergosterol molecule, the conventional mode of calculation starts to take more
time as we increase the number of threads. The direct mode is much faster for
the Ergosterol molecule. A conventional GAMESS job can be characterized into
two parts. One is the part where the integral files are written. This part is very
heavy on disk I/O. The second is the RHF SCF calculation using the integral
values calculated in step one. For every iteration, the GAMESS job has to fetch
the integral values from the files. If the files are small enough to fit in the main
memory, it gives us a distinct advantage in terms of performance, as we dont
need to calculate the integrals again for each iteration. On the other hand, if the
integral files are so large that they cannot be fit completely in the main memory,
the amount of page faults increases dramatically as we increase the number of

threads. This slows down the application considerably. In such cases, the direct
mode of operation is the best possible method of calculation. This is illustrated
in the benchmarking results that we have obtained. The main memory for a
Niagara processor is 16GB. For the Luciferin molecule, the entire file written
in the conventional mode can be accommodated in the main memory and this
reduces the latency of the virtual processors in getting the necessary integral data
from the files. On the other hand, the Ergosterol files cannot be accommodated
in the main memory and hence the conventional mode of operation degrades in
performance as we increase the number of threads.

Luciferin - Single Job Run Benchmarking Ergosterol - Single Job run Benchmarking
12624
82400

1:12:00 7:12:00

05736 60000

3 44800
04312

e
E 33600 | Ergosterol - Direct
£

Time in hours

0:28:48
22400

oteas !
saoo | J
oo AN edd el B N R
e e ek w m e e e s x ow ow s e

Number of processors threads Number of Processor Threads

Fig. 2. Luciferin : Single Job Benchmark Fig. 3. Ergosterol : Single Job Benchmark

One more thing to note is that the kernel itself is run on one of the 64-
processor threads. When we create processor sets, we are not allowed to assign
all the 64 threads to different processor sets since a single virtual processor is
required for running the kernel. In such a scenario, if we assign 63 threads to
execute a single GAMESS job, the job takes more time than when run with
48 threads. This is clearly visible in the benchmarking tests carried out on the
Luciferin (Conventional and Direct) and Ergosterol (Direct) execution. The ker-
nel requires more resources than allocated for performing other activities like
context switches, network activities of the machine etc. Also, the hardware in a
core is shared between the eight virtual processors. Hence having only a single
virtual processor free and the others assigned for GAMESS is not good from the
performance perspective.

The next set of experiments involved running simultaneous parallel GAMESS
jobs by partitioning the virtual processors equally, between the jobs but ensuring
that the physical cores associated with these threads are not divided between
the jobs. This ensures that the hardware resources associated with the physical
cores are used in completeness by the GAMESS job and not by any other process.
We ran these tests, first by using two GAMESS jobs (One Luciferin Molecule
and one Ergosterol molecule) and three GAMESS jobs (Two Luciferin Molecules
and one Ergosterol molecule). We compare the performance between an original
GAMESS with a conventional mode and GAMESS in which the NICAN middle-
ware triggers a dynamic algorithm selection of the SCF algorithm. The results

for the simultaneous execution of parallel GAMESS jobs shows that we obtain
nearly 50 percent gain in performance due to the switching algorithm. The gain
is less when we have a 4 processor thread run but increases as we increase the
number of processor threads allocated to each job to 31. The adaptation in
these tests includes both static and dynamic adaptation. We first introduce the
larger molecule Ergosterol in the system and then introduce the smaller molecule
Luciferin to observe the performance of the adaptation algorithm. It has been ob-
served that at lower processor thread allocation, the smaller molecule (Luciferin)
run is transformed into a Direct method of execution due to the presence of a
peer Ergosterol molecule but then switches back to conventional mode dynam-
ically to ensure a faster run time. For larger processor thread sets, the Direct
mode of execution is faster than the Conventional mode for Luciferin and it
completes its execution in the Direct mode itself. A similar trend is observed for
the larger molecule (Ergosterol) as well. As we increase the number of processor
thread allocation to Ergosterol, it becomes more and more resource constrained
due to the presence of other Luciferin molecules and switches dynamically to use
a Direct method of execution.

Adaptation 3 Jobs - Ergosterol, Luciferin , Luciferin
936:00

Adaptation 2Jobs - Ergosterol , Luciferin 82400

7:12:00

71200 +—

6:00:00 ——

60000 ——

a0 —B——m— 8B —8—8—
£ 44800 +— —

5 B No Adaptation
33600 1 = Adaptation
 No Adaptation 33600

Time in hours

Time in hour

22800 44— —— 8 L B sadaptation

-
-

0:00:00

Fig. 4. Two Simultaneous Parallel Jobs Ex- Fig.5. Three Simultaneous Parallel Jobs
ecution Execution

5 Conclusions and Future Work

The main focus of this work was to demonstrate that the adaptation algorithm
first introduced in [1] could be used to obtain performance improvement in
GAMESS when the execution environment is shifted to a multi-threaded en-
vironment. We have shown that as a result of static and dynamic adaptations in
GAMESS, the execution can be several magnitudes faster than the non-adaptive
GAMESS execution. On a chip multithreaded processor like the Niagara, the I/O
becomes a bottleneck as we start increasing the number of threads for a Conven-
tional mode of execution. In such cases, it was observed that the Direct mode
is the best way of execution. Also, it has been seen that the Conventional mode

will be faster than the Direct mode, when the entire integral file can be placed
in the main memory of the processor and the number of threads being used is
also small. As we increase the computing power by increasing the number of
processor threads, the overhead of multiple threads accessing the files starts to
degrade the performance of a Conventional execution method and we start to
get better performance in the Direct mode. This difference is essential in getting
the adaptation to work on such processors.

One thing to note here is that these experiments are not a means to bench-
mark the T2 Niagara processor for suitability to run large parallel legacy codes
like GAMESS. The endeavor was to test the adaptation capabilities of GAMESS
using NICAN middleware on a Chip Multithreaded processor. It would be inter-
esting to see how the application adaptability behaves when we have a cluster
of such multithreaded processors. The GAMESS-NICAN adaptation strategy is
a very generic adaptation strategy that can be reused with any parallel applica-
tion. In the future we would like to develop multiple adaptation control strategies
for usage on such processors. One of these could be to change the allocation of
threads dynamically from a single core to span multiple cores that would al-
low for higher hardware processing power to the application. Such application
independent parameters can be exploited during application runtime in these
processors to obtain higher performance gains.

References

1. Nurzhan Ustemirov, Masha Sosonkina, Mark S. Gordon and Michael W. Schmidt.
Dynamic Algorithm Selection in Parallel GAMESS Calculations Parallel Pro-
cessing Workshops, International Conference on, vol. 0, no. 0, pp. 489-496, 2006
International Conference on Parallel Processing Workshops (ICPPW’06), 2006.

2. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen,
S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A.
Montgomery. General Atomic and Molecular Electronic Structure System. Journal
of Computational Chemistry, 14, 1347-1363(1993).

3. B.M. Bode and M.S. Gordon. Macmolplt: a graphical user interface for GAMESS
Journal of Molecular Graphics and Modeling, 16, 133-138 (1998).

4. X. Chen, D. Turner. Efficient Message-Passing within SMP Systems. Recent Ad-
vances in Parallel Virtual Machine and Message Passing Interface, 10th European
PVM/MPI conference, Venice, Italy, pg 286-293 (October 2003).

5. F. Jensen. Introduction to Computational Chemistry. Wiley, Chester UK, 1999

6. W. D. Norcott and D. Capps. Tozone Filesystem Benchmark.
http://www.iozone.org

7. R. M. Olson, M. W. Schmidt, M. S. Gordon, A. P. Rendell. Enabling the Effi-
cient Use of SMP Clusters: The GAMESS/DDI Model, Proceedings of the 2003
ACM/IEEE conference on Supercomputing, p.41, November 15-21, 2003

8. M. Sosonkina. Adapting Distributed Scientific Applications to Run-time Network
Conditions. In J. Dongarra, K. Madsen and Jerzy Wasniewski, editors, Applied
Parallel Computing, State of the Art in Scientific Computing, 7th International
Workshop, PARA 2004, Revised Selected Papers, volume 3732 of Lecture Notes in
Computer Science, pages 745-755. Springer, 2006.

10.

11.

12.

13.

M. Sosonkina, S. Storie. Parallel performance of an iterative method in cluster
environments: an experimental study. In Proceedings PMAA 2004, Marseille, Oc-
tober 2004.

S. Storie. Aspects of Communication Subsystem Analysis for Distributed Scientific
Applications. Masters Thesis, University of Minnesota Duluth, May 2004.

E.H. White, F. Capra, W.D. McElIroy. The Structure and Synthesis of Firefly
Luciferin J. Am. Chem. Soc., 83(10), 2402-2403(1961).

N. Ustemirov, M. Sosonkina, M.S. Gordon, M.W. Schmidt. Concurrent Execution
of Electronic Structure Calculations in SMP Environments. In Proceedings HPC
2005, April 2005.

N. Ustemirov, M. Sosonkina. Efficient Execution of Parallel Electronic Structure
Calculations on SMP Clusters. Minnesota Supercomputing Institute Technical
Report umsi-2005-227, University of Minnesota, 2005

